С момента своего открытия более века назад сверхпроводимость стала играть важную роль во многих современных технологиях, таких как поезда на магнитной подвеске и сканирование МРТ, но ее полезность была ограничена необходимостью чрезвычайно низких рабочих температур.
Сейчас ученые заявляют о большом прорыве в этой области, создав, по их словам, первый материал, способный к сверхпроводимости при комнатной температуре.
Работу возглавил Ранга Диас из Университета Рочестера, и она направлена на преодоление одного из основных препятствий на пути расширения использования сверхпроводящих материалов. Эти материалы не обладают электрическим сопротивлением и излучают магнитное поле, но, поскольку они обычно работают только при температурах ниже -140°C, для их обслуживания требуется дорогостоящее оборудование.
«Из-за пределов низких температур материалы с такими необычными свойствами не изменили мир так, как многие могли себе представить», — говорит Диас. «Однако наше открытие разрушит эти барьеры и откроет дверь для многих потенциальных приложений.»
Диас описывает сверхпроводимость при комнатной температуре как «святой Грааль» физики конденсированного состояния, и в исследовании, опубликованном на этой неделе, его команда сделала значительный шаг к этой цели.
Исследователи потратили годы на эксперименты с различными материалами в поисках сверхпроводников при комнатной температуре, таких как оксиды меди и химические вещества на основе железа, но Диас и его команда добились успеха именно с широко распространенным водородом.
«Чтобы иметь высокотемпературный сверхпроводник, вам нужны более прочные связи и легкие элементы», — говорит он. «Это два основных критерия. Водород — самый легкий материал, а водородная связь — одна из самых прочных».
Одним из недостатков этого подхода является то, что чистый водород может быть преобразован в металлическое состояние только при чрезвычайно высоких давлениях, поэтому ученые вместо этого обратилась к альтернативным материалам, которые богаты водородом, но сохраняют желаемые сверхпроводящие свойства и могут быть металлизированы при гораздо более низких давлениях.
Формула победы включает смесь водорода, углерода и серы, которая была использована для синтеза углеродсодержащего гидрида серы органического происхождения в исследовательском устройстве высокого давления, называемом ячейкой с алмазной наковальней.
Этот углеродистый гидрид серы продемонстрировал сверхпроводимость при температуре около 14,5°C и давлении 267 ± 10 гигапаскалей.
Некоторые из применений для этого типа материала включают более эффективные электрические сети, которые передают электричество без больших потерь, вызванных сопротивлением в современных проводах, более мощные поезда на магнитной подвеске или другие футуристические транспортные решения, а также улучшенные технологии медицинской визуализации.
Однако, прежде чем что-либо из этого произойдет, ученые будут работать над решением одной проблемы с текущим подходом, а именно огромным давлением, необходимым для создания материала внутри ячейки алмазной наковальни.
Исследователи говорят, что разработка способа производства сверхпроводящего материала при гораздо более низких давлениях будет ключом к производству его в полезных количествах по разумной цене. Они также отмечают, что точная настройка состава ингредиентов может обеспечить сверхпроводимость при еще более высоких температурах.
Исследование было опубликовано в журнале Nature.
ну вот когда они снизят давление до нормального уровня, вот тогда это будет прорыв
Как сказал подписчик одной тематической группы: «Тот самый случай, когда охладить до -140 С проще чем сжать до фиг-знает сколько сотен гигапаскалей.»