Экситоны прокладывают путь к более производительной электронике

Ученые нашли способ контролировать некоторые свойства экситонов и изменять поляризацию света

0 916

После разработки метода управления потоками экситонов при комнатной температуре ученые EPFL открыли новые свойства этих квазичастиц, которые могут привести к созданию более энергоэффективных электронных устройств.

Они первыми стали контролировать потоки экситонов при комнатной температуре. И теперь команда ученых из Лаборатории наноразмерной электроники и конструкций EPFL (LANES) сделала еще один шаг вперед в своей технологии. Они нашли способ контролировать некоторые свойства экситонов и изменять поляризацию света, который они генерируют.

Это может привести к появлению нового поколения электронных устройств с транзисторами, которые подвергаются меньшим потерям энергии и рассеиванию тепла. Открытие ученых является частью новой области исследований под названием долотроника и только что было опубликовано в журнале Nature Photonics.

Экситоны создаются, когда электрон поглощает и переходит на более высокий энергетический уровень, или «энергетическую зону», как их называют в квантовой физике твердого тела. Этот возбужденный электрон оставляет «электронную дыру» в своей предыдущей энергетической зоне. И поскольку электрон имеет отрицательный заряд, а дыра — положительный заряд, они связаны электростатической силой, называемой кулоновской силой. Эта пара электрон-электронная дыра называется экситоном.

Беспрецедентные квантовые свойства

Экситоны существуют только в полупроводниковых и изоляционных материалах. К их необычным свойствам можно легко получить доступ в двумерных материалах, которые представляют собой материалы, базовая структура которых имеет толщину всего в несколько атомов. Наиболее распространенными примерами таких материалов являются и молибденит.

Смотрите также  Новая технология Air-gen генерирует электричество из воздуха

Когда такие двумерные материалы объединяются, они часто проявляют квантовые свойства, которыми ни один материал не обладает сам по себе. Таким образом, ученые из EPFL объединили диселенид вольфрама (WSe2) с диселенидом молибдена (MoSe2), чтобы открыть новые свойства с рядом возможных высокотехнологичных применений.

Используя для генерации световых пучков с круговой поляризацией и слегка смещая положения двух двумерных материалов, чтобы создать рисунок муара, они смогли использовать экситоны для изменения и регулирования поляризации, длины и интенсивности света.

Ученые достигли этого, манипулируя одним из свойств экситонов: их «впадиной», которая связана с крайностями энергий электрона и дыры. Эти впадины (или долины) — отсюда и название Valleytronics — могут быть использованы для кодирования и обработки информации на наноскопическом уровне.

«Соединение нескольких устройств с этой технологией дало бы нам новый способ обработки данных», — говорит Андрас Кис, глава LANES. «Изменяя поляризацию света в данном устройстве, мы можем затем выбрать конкретную впадину во втором подключенном к нему устройстве. Это похоже на переключение с 0 на 1 или с 1 на 0, что является фундаментальной двоичной логикой, используемой в вычислениях».


Alberto Ciarrocchi et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures, Nature Photonics (2018). DOI: 10.1038/s41566-018-0325-y 

Войти с помощью: 
Подписаться
Уведомление о
guest
0 Комментарий
Встроенные отзывы
Посмотреть все комментарии
0
Будем рады вашим мыслям, пожалуйста, прокомментируйте.x
()
x