Физики наблюдали суперфлуоресценцию перовскита при высоких температурах

Суперфлуоресценция - это пример квантового фазового перехода, когда отдельные атомы в материале проходят через одни и те же фазы в тандеме, становясь синхронизированной единицей

0 754

Ученые открыли, что обычный перовскит может суперфлуоресцировать при температурах, которые практически достижимы, и происходят в достаточно длительных временных масштабах, чтобы сделать его потенциально полезным в приложениях квантовых вычислений. Открытие исследователей из Университета штата Северная Каролина также указывает на то, что суперфлуоресценция может быть общей характеристикой для всего этого класса материалов.

Суперфлуоресценция — это пример квантового фазового перехода, когда отдельные в материале проходят через одни и те же фазы в тандеме, становясь синхронизированной единицей.

Например, когда в оптическом материале, таком как перовскит, возбуждаются, они могут индивидуально излучать свет, создавать энергию и флуоресцировать.

Каждый атом начинает случайным образом проходить через эти фазы, но при правильных условиях они могут синхронизироваться в макроскопическом квантовом фазовом переходе. Эта синхронизированная единица может затем взаимодействовать с внешними электрическими полями сильнее, чем любой отдельный атом, создавая сверхфлуоресцентный всплеск.

«Случаи самопроизвольной синхронизации универсальны, они встречаются везде, от планетных орбит до светлячков, синхронизирующих свои сигналы», — говорит Кенан Гундогду, профессор физики в NC State и автор исследования.

«Но в случае твердых материалов считалось, что эти фазовые переходы происходят только при чрезвычайно низких температурах. Это происходит потому, что движутся в противофазе слишком быстро, чтобы синхронизация могла произойти, если только не замедляется из-за охлаждения».

Ученые наблюдали сверхфлуоресценцию в перовските метиламмоний иодид свинца, или MAPbI3, при исследовании его лазерных свойств. Перовскиты — это материалы с кристаллической структурой и светоизлучающими свойствами, полезные, среди прочего, для создания лазеров. Они недороги, относительно просты в изготовлении и используются в фотогальванике, источниках света и сканерах.

Смотрите также  Физики раскрывают квантовую структуру "бакибола"

«Пытаясь выяснить динамику свойств генерации MAPbI3, мы заметили, что наблюдаемая нами динамика не может быть описана простым поведением генерации», — говорит Кенан Гундогду. «Обычно при генерации одна возбужденная частица излучает свет, стимулирует другую и так далее при геометрическом усилении. Но с этим материалом мы наблюдали синхронизацию и квантовый фазовый переход, приводящий к сверхфлуоресценции».

Но наиболее поразительными аспектами сверхфлуоресценции было то, что она происходила при температуре 78 Кельвинов и имела жизни фазы от 10 до 30 пикосекунд.

«Обычно суперфлуоресценция происходит при очень низких температурах, которые трудно и дорого достичь, и она длится всего фемтосекунды», — говорит Гундогду. «Но 78 К — это температура сухого льда или жидкого азота, а жизни фазы на два-три порядка больше. Это означает, что у нас есть макроскопические единицы, которые служат достаточно долго, чтобы ими можно было манипулировать».

Исследователи считают, что это свойство может быть более широко распространено в перовскитах в целом, что может оказаться полезным в квантовых приложениях, таких как компьютерная обработка или хранение информации.

«Наблюдение сверхфлуоресценции в твердотельных материалах всегда имеет большое значение, потому что до сих пор мы наблюдали ее только в пяти или шести материалах», — говорят исследователи. «Возможность наблюдать это при более высоких температурах и в более длительные сроки открывает дверь ко многим захватывающим возможностям».

Смотрите также  Pluridens serpentis - новый вид мозазавров обнаружен в Марокко

Работа опубликована в журнале Nature Photonics.

Войти с помощью: 
Подписаться
Уведомление о
guest
0 Комментарий
Встроенные отзывы
Посмотреть все комментарии
0
Будем рады вашим мыслям, пожалуйста, прокомментируйте.x
()
x