
Калькулятор ЭДС гальванического элемента — это простой инструмент, который предоставляет вам значение электродвижущей силы (EMF) для любой гальванической ячейки с заданным потенциалом электродов. Если вы немного запутались со всеми этими терминами, не волнуйтесь!
В статье ниже вы найдете краткое описание того, что такое ЭДС, как рассчитать ЭДС и примеры источников электродвижущей силы. Более того, мы подготовили объяснение окислительно-восстановительной реакции и гальванического элемента. Краткое пошаговое руководство демонстрирует использование калькулятора.
Что такое ЭДС?
ЭДС — это сокращение от электродвижущей силы. По определению, ЭДС — это сила или электрическое давление, которое генерирует ток в цепи. Единицы измерения ЭДС в вольтах [В].
Чтобы лучше понять это определение, рассмотрим типичную гальваническую ячейку, состоящую из двух электродов. Электродвижущая сила — это разность потенциалов между ними.
Кроме того, электродвижущая сила гальванического элемента определяет способность электрохимического элемента вызывать поток электронов через электрическую цепь.
Уравнение ЭДС
Электродвижущая сила электрохимической ячейки может быть рассчитана с использованием уравнения:
EMFcell [V] = Ecathode [V] — Eanode [V]
где Ecathode — это потенциал катода (в вольтах), а Eanode — это потенциал анода (в вольтах). Помните, что в ячейке потенциал катода выше, чем потенциал анода.
Электропотенциал анода и катода
Если вы хотите найти потенциал металлического электрода, один из способов — проверить гальванический ряд и найти конкретный металл в таблице. Второй способ — рассчитать его, используя уравнение Нерста, также известное как уравнение потенциала ячейки. Эта формула позволяет рассчитать восстановительный потенциал полуклеточной или полной клеточной реакции.
В таблице ниже вы можете найти электропотенциал металлов:
Стандартные электродные потенциалы металлов при 25 °С
Электрод | Электродная реакция | Потенциалы Е°, В |
---|---|---|
Li / Li+ | Li+ + e-= Li | -3,045 |
Rb / Rb+ | Rb+ + e-= Rb | -2,925 |
K / K+ | K+ + e-= K | -2,924 |
Cs / Cs+ | Cs+ + e-= Cs | -2,923 |
Ba / Ba2+ | Ba2+ + 2e-= Ba | -2,905 |
Sr / Sr2+ | Sr2+ + 2e-= Sr | -2,888 |
Ca / Ca2+ | Ca2+ + 2e-= Ca | -2,866 |
Na / Na+ | Na+ + e-= Na | -2,714 |
Mg / Mg2+ | Mg2+ + 2e-= Mg | -2,363 |
Sc / Sc3+ | Sc3+ +3e-= Sc | -2,077 |
Be / Be2+ | Be2+ + 2e-= Be | -1,847 |
Al / Al3+ | Al3+ + 3e-= Al | -1,660 |
Mn / Mn2+ | Mn2+ + 2e-= Mn | -1,179 |
Cr / Cr2+ | Cr2+ + 2e-= Cr | -0,913 |
Zn / Zn2+ | Zn2+ + 2e-= Zn | -0,760 |
Fe / Fe2+ | Fe2+ + 2e-= Fe | -0,440 |
Cd / Cd2+ | Cd2+ + 2e-= Cd | -0,400 |
Co / Co2+ | Co2+ + 2e-= Co | -0,277 |
Ni / Ni2+ | Ni2+ + 2e-= Ni | -0,250 |
Sn / Sn2+ | Sn2+ + 2e-= Sn | -0,136 |
Pb / Pb2+ | Pb2+ + 2e-= Pb | -0,126 |
H2 / H+ | 2H+ + 2e-= H2 | 0,000 |
Sb / Sb3+ | Sb3+ + 3e-= Sb | +0,2 |
Bi / Bi3+ | Bi3+ + 3e-= Bi | +0,23 |
Cu / Cu2+ | Cu2+ + 2e-= Cu | +0,337 |
Hg / Hg+ | Hg+ + 1e-= Hg | +0,788 |
Ag / Ag+ | Ag+ + e-= Ag | +0,799 |
Pd / Pd2+ | Pd2+ 2e-= Pd | +0,987 |
Pt / Pt2+ | Pt2+ + 2e-= Pt | +1,188 |
Au / Au+ | Au+ + e-= Au | +1,692 |
Как рассчитать ЭДС?
Взгляните на пример расчета ЭДС ниже.
Давайте рассмотрим ячейку Даниэля — простую электрохимическую ячейку, изобретенную в 1836 году Джоном Фредериком Даниэлем (британский химик и метеоролог). В этой ячейке медь погружается в раствор сульфата меди (II), а цинк — в раствор сульфата цинка.
Схема ячейки: (-) Zn | Zn2 + || Cu2 + | Cu (+)
Проверьте потенциал металла: электродный потенциал цинка составляет -0,76 В, а меди — +0,34 В ⇒ из-за более низкого потенциала цинк является анодом, а медь — катодом. Введите эти значения в наш калькулятор.
Рассчитайте значение ЭДС электрохимической ячейки, используя уравнение:
EMFcell = +0,34 В — (-0,76 В) = 1,10 В
Электродвижущая сила ячейки Даниэля равна 1,10 вольт.
Источники электродвижущей силы
Ниже вы можете найти несколько примеров источников ЭМП:
- батареи
- генераторы переменного тока
- гальванические элементы
- солнечные батареи
- топливные элементы
- термопары
- некоторые живые организмы (например, электрический угорь)
Каждый из перечисленных выше источников ЭДС содержит источник энергии, который вызывает поток электрических зарядов. Этими источниками могут быть химические процессы (в батареях, топливе и гальванических элементах), механические силы (в генераторах), электромагнитное излучение, излучаемое Солнцем (в солнечных элементах) и разность температур (в термопарах).
Типы электрохимических ячеек
Электрохимическая ячейка является одним из видов источников энергии. Его можно создать, поместив металлические электроды в электролит, где химическая реакция генерирует или использует электрический ток.
Электрохимические элементы, которые генерируют электрический ток, называются гальваническими элементами (названными в честь их изобретателя, итальянского физика Алессандро Вольта) или гальваническими элементами (названными в честь итальянского физика и врача Луиджи Гальвани).
Обычные батареи состоят из одного или нескольких таких элементов. В других электрохимических элементах электрический ток, подаваемый извне, используется для запуска химической реакции (которая не должна происходить самопроизвольно).
Окислительно-восстановительная реакция
Процессы восстановления и окисления происходят только вместе (невозможно, чтобы эти реакции происходили отдельно). Вот почему окислительно-восстановительные реакции могут быть описаны как две полуреакции, одна представляет процесс окисления, а другая — процесс восстановления. Давайте посмотрим на это на примере ячейки Даниэля.
В ячейке Даниэля медь погружается в раствор сульфата меди (II), а цинк — в раствор сульфата цинка. В этой ячейке цинк действует как анод (из-за более низкого электрического потенциала), а медь действует как катод (из-за более высокого электропотенциала):
E⁰ цинкового электрода = -0,76 В
E⁰ медного электрода = +0,34 В
Общая химическая реакция клетки Даниэля: Zn (s) + Cu2⁺ (aq) → Zn²⁺ (aq) + Cu (s)
Окисление (на аноде): Zn (s) → Zn²⁺ (aq) + 2e⁻
Восстановление (на катоде): Cu2⁺ (aq) + 2e⁻ → Cu (s)
Количество электронов, потерянных восстановителем, равно числу электронов, полученных окислителем (для любой окислительно-восстановительной реакции).