Новый способ предсказания свойств магнитных сплавов с помощью ИИ
Разработан новый способ для компьютерного моделирования магнитных сплавов с помощью машинно-обучаемых потенциалов. Исследовательскую работу провели ученые Сколтеха и МФТИ, а также их коллеги из Германии, Австрии и Норвегии. Новый метод в качестве переменных учитывает магнитные моменты атомов (магнитные степени свободы), благодаря чему он успешно смог предсказать энергию, механические и магнитные характеристики сплава железа и алюминия. Ученые планируют добавить в метод активное обучение и протестировать его на другом материале — нитриде хрома.
При компьютерном моделировании материалов нередко приходится искать баланс между скоростью и точностью расчетов. Наименьшие ошибки в предсказаниях свойств и структуры веществ дают квантово-механические методы, в которых рассчитывается электронная структура вещества. Наиболее популярный из них — теория функционала плотности (DFT), в котором вместо волновой функции для каждого электрона используется обобщенная электронная плотность, что уменьшает количество переменных, упрощает описание и ускоряет вычисления.
Однако даже на суперкомпьютерах такими подходами можно моделировать системы размерами всего лишь в десятки и сотни атомов. Для расчетов более крупных систем применяют более упрощенные подходы через потенциалы взаимодействия, которые описывают силы между атомами и не учитывают электронную структуру. Из-за этого падает точность предсказаний свойств материала.
В последние годы было найдено промежуточное решение, когда можно сохранить «квантово-механическую точность» и на несколько порядков уменьшить скорость вычислений даже для систем из тысяч атомов. Одним из популярных методов стало машинное обучение, с помощью которого исследователи создают потенциалы взаимодействия, но обученные на результатах квантово-механических расчетов. Эти потенциалы лучше предсказывают параметры материалов, чем эмпирические аналоги. Однако даже машинно-обученные потенциалы не всегда учитывают магнитные степени свободы атомов, что может приводить к ошибкам, например при моделировании материалов с выраженным ферро-, антиферро- или парамагнетизмом.
Чтобы корректно предсказывать свойства подобных веществ, научная группа физиков и математиков из МФТИ и Сколтеха обобщила свой метод построения машинно-обучаемых потенциалов MTP (Moment Tensor Potentials) до версии mMTP (magnetic MTP), в которой учтены магнитные степени свободы атомов. Ученые уже применяли новую версию в том числе для предсказания энергии железа в парамагнитном и ферромагнитном состоянии. В новой работе ученые протестировали метод для двухкомпонентного сплава железо-алюминий.
Старший научный сотрудник Сколковского института науки и технологий, доцент кафедры химической физики функциональных материалов МФТИ Иван Новиков рассказал, что коллектив ученых занимается разработкой машинно-обучаемых потенциалов, которые ускоряют приблизительно на пять порядков квантово-механические расчеты, нужные для описания свойств материалов.
В последние три года пошла разработка машинно-обучаемых потенциалов с магнитными степенями свободы, и мы тоже уже создали подобный потенциал — магнитный MTP и валидировали его для системы железа. В этой работе мы хотели провалидировать потенциал уже на двухкомпонентной системе и продемонстрировать алгоритм построения базы данных для обучения потенциала»
— сказал Иван Новиков.
Исследователи собрали базу данных на основе результатов квантово-механических расчетов и по ней обучили пять mMTP-потенциалов. А затем проверили, как потенциалы предсказывает структуру и магнитные свойства сплава в зависимости от концентрации алюминия.
На первом и самом долгом этапе работы ученые собирали базу данных для обучения модели. Для квантово-механических расчетов выбрали системы из 16 атомов. Системы отличались по количеству и взаимному расположению («раскраске») атомов железа и алюминия. Полученные конфигурации приводили в состояние равновесия — релаксировали с помощью теории функционала плотности, то есть подбирались положения атомов, размеры кристаллической решетки и магнитные моменты, при которых конкретная структура имела минимальную энергию.
На следующем шаге конфигурации возмущали: меняли размеры решетки и сдвигали атомы. На финальном третьем этапе возмущали уже магнитные моменты для структур как с первого шага, так и со второго, для этого использовали теорию функционала плотности, в которой есть ограничения типа равенств на магнитные моменты электронов — constrained DFT. После всех трех шагов была получена база из более 2 000 конфигураций с возмущениями и без.
Второй этап работы — обучение и верификация потенциалов mMTP — был самым сложным. На полученной выборке конфигураций исследователи обучали ансамбль из пяти потенциалов MTP. Затем исследователи сравнивали его предсказания равновесных параметров конфигураций (позиций атомов, магнитных моментов, размеров решетки) с квантово-механическими расчетами. Новый метод показал высокую точность и согласие с квантово-механическим моделированием для всех концентраций алюминия.
Результаты MTP также качественно совпали с экспериментом, когда ученые рассмотрели зависимость размеров решетки от содержания алюминия в сплаве. В пределах концентрации от 20% до 40% алюминия параметры решетки не менялись. Количественная разница связана в том числе с тем, что моделирование, в отличие от опытов, проводилось при абсолютном нуле температур.
В последней части работы ученые сравнили магнитные моменты сплавов, полученные квантово-механическим методом и с помощью mMTP. Результаты согласовались друг с другом и теорией: если концентрации алюминия росла, сплав терял магнитные свойства. mMTP предсказал полную потерю ферромагнетизма при 50% содержании алюминия, в отличие от квантово-механических расчетов. Данное расхождение нуждается в дополнительном исследовании.
Далее ученые планируют добавить активное обучение в свой метод, чтобы отбор конфигураций системы, подходящих для обучения потенциала, происходил автоматически. Это позволит исследовать материалы при ненулевых температурах, а также парамагнитные системы.
Работа выполнена при поддержке гранта РНФ 22-73-10206 «Разработка машинно-обучаемых потенциалов межатомного взаимодействия с магнитными степенями свободы».
Исследование было опубликовано в Scientific Reports.