Темпы развития атомных реакторов явно отстают от стремительно растущей потребности в атомной энергии. Среди причин такого положения дел – неспособность материалов, из которых создаются элементы реактора, выдерживать возрастающие нагрузки и устаревшие технологии, которые применяют при разработке новых материалов.
От чего страдают материалы?
«Сердце» любого ядерного реактора – это его тепловыделяющие элементы или, проще говоря, твэлы, которые располагаются в активной зоне. Твэл представляет собой установленные друг на друга таблетки из диоксида урана, окруженные герметичной оболочкой из сплава циркония. Оболочка твэла омывается теплоносителем и служит защитой для топлива.
В самом распространенном типе реактора, который у нас в стране называется ВВЭР (водо-водяной энергетический реактор), а на Западе PWR (pressurized water reactor), в качестве теплоносителя используется вода. При этом в активной зоне реактора вода нагревается до 360 С – однако не закипает и не превращается в пар, поскольку находится под огромным давлением порядка 170 атмосфер.
Одновременно, под влиянием порождаемой ядерным топливом радиации в воде происходит так называемый процесс радиолиза, в результате которого образуются химически активные ионы и радикалы (продукты развала молекул воды). Итак, вода, окружающая топливный элемент в реакторе, нагрета до высокой температуры, находится под огромным давлением и при этом насыщена химически активными частицами.
Надо ли говорить, насколько агрессивна такая среда по отношению ко всему, с чем она соприкасается? Особенно несладко приходится как раз оболочкам твэлов. Водная среда наносит ей двойной удар: кислород создает подверженный растрескиванию оксидный слой на поверхности оболочки, а водород, проникая в цирконий, делает его более хрупким, что тоже способствует развитию трещин.
Из-за недостаточной коррозионной стойкости оболочки, топливо отрабатывает лишь небольшую долю своего ресурса, прежде чем твэл приходится извлекать из реактора. А повышение мощности реакторов вообще выглядит несбыточной мечтой, поскольку оно сопряжено с увеличением температуры активной зоны реактора, что неизбежно приведет к резкому ускорению коррозионных процессов в оболочках твэлов.
Ученые всего мира начали работать над усовершенствованием материалов оболочек еще в середине XX века. Однако появление тех или иных удачных технологических решений может занимать даже не годы, а десятилетия.
Почему так долго?
Дело в том, что разработка новых сплавов и методов обработки поверхности требует постоянного проведения дореакторных испытаний. Для этого берется специальный стальной автоклав с толстыми стенками, в который заливается определенное количество воды и помещаются исследуемые образцы новых материалов.
После этого автоклав герметизируется и устанавливается в печь, в которой нагревается до эксплуатационной температуры оболочек твэлов. А вот дальше придется запастись терпением, потому как прежде, чем можно будет сделать какой-то вывод о коррозионной стойкости исследуемых образцов, должен пройти не один месяц.
В условиях, когда каждый шаг разработчика должен верифицироваться испытаниями, длящимися месяцами, невозможно говорить об интенсивном развитии реакторных материалов.
Как можно ускорить процесс?
Но как ускорить коррозионные испытания материалов, если даже в сверхагрессивной среде водного теплоносителя процесс коррозии оболочек твэлов занимает годы? Что может быть еще агрессивнее?
У ученых кафедры физики плазмы Института лазерных и плазменных технологий (Институт ЛаПлаз) НИЯУ МИФИ есть ответ на этот вопрос. Это плазма. Если поместить испытательный образец в частично ионизованную низкотемпературную плазму, то поток химически активных ионов и радикалов, контактирующих с поверхностью объекта, окажется даже более интенсивным, чем это бывает в активной зоне легководного реактора.
Поэтому, если зажечь плазму в парах воды, то на образец, помещенный в нее, будет воздействовать тот же самый ансамбль частиц, что и в водном теплоносителе реактора, но при этом гораздо интенсивнее за счет большего вклада от ионов и радикалов.
В результате, сохраняя неизменными механизмы оксидирования и наводороживания (то есть насыщения водородом) циркониевых сплавов, плазменное облучение заставит протекать эти процессы существенно быстрее по сравнению не только с водной средой автоклава, но и с реальными условиями реактора.
Ученые кафедры физики плазмы Института ЛаПлаз при поддержке Института промышленных ядерных технологий НИЯУ МИФИ работают над тем, чтобы сделать технологию ускоренных плазменных испытаний реальностью.
Уже экспериментально подтверждена гипотеза о воспроизводимости результатов автоклавных испытаний отдельных циркониевых сплавов при плазменном облучении. Найдены режимы облучения, позволяющие ускорить процессы оксидирования и наводороживания циркониевых сплавов в десятки и сотни раз.
Несомненно, будущее создание и (что самое главное!) внедрение плазменной технологии коррозионных испытаний в атомную промышленность станет мощным драйвером для всех разработок, посвященных повышению коррозионной стойкости материалов. И тогда перспектива появления реакторов нового поколения с повышенной мощностью в обозримом будущем становится реальней…