Расшифрован генетический код кишечной палочки
Как правило, живые организмы используют для строительства белков 20 различных аминокислот, которые кодируются комбинациями из трех нуклеотидов (кодонов) в ДНК
Химики Университета Райса в США раскрыли генетический код кишечной палочки Escherichia coli, внедрив в механизм синтеза белков дополнительную аминокислоту. В результате бактерия превратилась в живой индикатор окислительного стресса. Об этом сообщается в статье Chem.
Как правило, живые организмы используют для строительства белков 20 различных аминокислот, которые кодируются комбинациями из трех нуклеотидов (кодонов) в ДНК.
Генетики аставили кишечную палочку использовать аминокислоту гидрокситриптофан (5HTP), которая у людей служит предшественником нейромедиатора серотонина. У бактерии 5HTP начала включаться в состав белка, который флуоресцирует в состоянии метаболического стресса.
Изменение генетического кода состояло из трех этапов. Во-первых, ученые разработали биохимический трансляционный механизм, позволяющий клетке включать 5HTP в состав белков.
Этот механизм является биортогональным, то есть он не мешает естественным биохимическим процессам и не нарушает нормальный процесс трансляции, когда генетическая информация о строении обычных белков переносится к рибосомам, где эти белки синтезируются.
Во-вторых, для кодирования 5HTP был использован «пустой» кодон — последовательность из трех нуклеотидов, которая не «закреплена» за конкретной аминокислотой. Наконец, бактериям прививали ферменты, необходимые для производства самой 5HTP.
К настоящему моменту исследователи по всему миру создали более 200 неканонических аминокислот, однако большинство из них не могут быть синтезированы живыми организмами. Внедрение дополнительных аминокислот позволяет специалистам следить за состоянием клеток и их реакциями на окружающую среду.
Ученые надеются, что в будущем способность живых организмов самостоятельно производить искусственные молекулы позволит получать терапевтические препараты в нужных количествах. Например, модифицированные опухолевые клетки могут производить противоопухолевые молекулы, останавливая развитие рака.