Биологический словарь
РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ
РИБОНУКЛЕИНОВЫЕ КИСЛОТЫ
РНК, нуклеиновые к-ты, содержащие в качестве углеводного компонента рибозу, а в качестве азотистых оснований — аденин, гуанин, урацил, цитозин, а также их модифицированные производные (напр., метилированные). Обязательные компоненты всех живых клеток, мн. вирусов; участвуют в реализации генетич. информации. Пространственная структура РНК представлена в осн. однонитчатой полинуклеотидной цепью (содержит от 75 до 10 000 нуклеотидов), образующей в отд. местах двуспиральные участки по принципу комплементарности оснований. В соответствии с функцией и структурными особенностями различают неск. классов клеточных РНК: рибосомальные (рРНК), транспортные (тРНК), информационные, или матричные (иРНК, или мРНК), и низкомолекулярные РНК (нмРНК). В живой клетке синтез РНК на матрице ДНК (см. ТРАНСКРИПЦИЯ) осуществляется с помощью фермента РНК-полимеразы. В клетках эукариот обнаружены 3 разные РНК-полимеразы, синтезирующие разные классы РНК. Синтезированная РНК комплементарна матрице ДНК, поскольку порядок включения нуклеотидов в цепь РНК определяется последовательностью нуклеотидов в матрице ДНК, по принципу специфического спаривания оснований. В пределах определ. гена только одна из 2 комплементарных цепей ДНК служит матрицей для синтеза РНК. Молекулы РНК синтезируются обычно в виде предшественников, имеющих большую мол. м., чем функционально активные молекулы. 1Рибосомальные РНК высокомолекулярны и составляют ок. 80% всех клеточных РНК. В клетках эукариот синтез рРНК локализован в ядрышке и осуществляется РНК-полимеразой I; геном содержит от 50 до 1000 идентичных копий генов, кодирующих рРНК. Рибосомальные гены расположены в виде протяжённых тандемов и локализованы в одной или неск. хромосомах. В результате взаимодействия этих участков со специфич. белками образуются ядрышки. Связываясь с определ. белками, рРНК организуют важнейший аппарат клетки — рибосомы, обеспечивающие синтез всех клеточных белков.
На рРНК приходится ок. 60% массы рибосомы. Транспортные РНК низкомолекулярны (мол. м. ок. 25 000), их структура наиб, изучена по сравнению с др. классами РНК; синтезируются при помощи РНК-полимеразы III в виде предшественников. Структура молекул тРНК отличается эволюц. консервативностью, что, по-видимому, связано с высокой степенью их функц. специализации. На основании данных О первичной структуре неск. тРНК показано, что существует один способ двумерной укладки цепей тРНК, дающий макс, кол-во спаренных участков: все известные тРНК образуют вторичные структуры, напоминающие по форме клеверный лист. Третичная структура, образуемая при участии дополнит, водородных связей, напоминает по форме латинскую букву L. Осн. функция тРНК — связывание соотв. аминокислоты (происходит за счёт образования ковалентной связи между карбоксильной группой аминокислоты и остатком концевой рибозы тРНК) и перенос её на рибосому с помощью фермента аминоацил-синтетазы, способной специфически «узнавать» как аминокислоту, так и соответствующую ей тРНК. Для каждой аминокислоты существует специфич. аминоацилсинтетаза и тРНК. В ряде случаев для одной и той лее аминокислоты имеется две или более тРНК, т. к. одна аминокислота может кодироваться неск. разными кодонами (вырожденность кода). Информационные, или матричные, РНК наиб, разнообразны по мол. м. (от 0,05 X 106 до 4 X 10s). Они составляют ок. 2% от общего кол-ва РНК в клетке, служат матрицами для синтеза клеточных белков. В клетках эукариот синтез мРНК осуществляется в ядре, откуда в составе специфич. рибонуклеопротеидных частиц (информосом) мРНК транспортируется в цитоплазму. Синтез длинных предшественников мРНК (про-мРНК), содержащих некодирующие участки, и их дальнейшие значит, превращения — характерная особенность эукариот. Некодирующие участки (нитроны) распределены по всей длине молекулы про-мРНК. Процесс выщепления интронов и дальнейшая компоновка кодирующих участков(сплайсинг)направляется спец. клеточными механизмами (см. ПРОЦЕССИНГ). Зрелая мРНК содержит 5′-и З’-концевые нетранслируемые последовательности, длина к-рых варьирует у разных мРНК. В 5′-концевой последовательности имеется участок, необходимый для связывания мРНК с рибосомой. Роль этих нетранслируемых последовательностей неизвестна. На 5′-конце мРНК эукариот обычно имеется метилированный по 7′-положению гуанозин («кэп»-структура), связанный 5′-5′ пирофосфатной связью с последующим основанием. В большинстве случаев 3′-конец мРНК завершается протяжённой (до 250 оснований) гомополимерной последовательностью (полиаденилатом), к-рая добавляется к мРНК после завершения её транскрипции. У прокариот синтезированная мРНК не претерпевает существ, изменений. Низкомолекулярные РНК (нмРНК) разнообразны по функции, структуре и размерам (от 70 до 300 оснований). Рибосомальные нмРНК— 5S рРНК и 5,8S рРНК входят в состав 60 S субчастиц рибосом, нмРНК др. типа обнаружены в ядре и цитоплазме эукариот в составе рибонуклеопротеидных частиц (РНП-частиц). Предполагается, что РНП-частицы выполняют важную роль в механизме сплайсинга про-мРНК, в синтезе белков, секретируемых клеткой. Нек-рые ферменты (напр., изомераза амилаза, панкреатическая рибонуклеаза) содержат нмРНК в качестве необходимого структурного элемента. Функция большинства нмРНК не ясна. У РНК-содёржащих вирусов геномы представлены двуспиральной или односпиральной РНК. Структурная организация геномных РНК нек-рых вирусов сходна с мРНК эукариот и подобно последней может непосредственно транслироваться. У др. вирусов транслируется только РНК, комплементарная геномной цепи. Перечисленные выше _классы РНК далеко не исчерпывают всё многообразие РНК, встречающихся в живой природе.
РНК, нуклеиновые к-ты, содержащие в качестве углеводного компонента рибозу, а в качестве азотистых оснований — аденин, гуанин, урацил, цитозин, а также их модифицированные производные (напр., метилированные). Обязательные компоненты всех живых клеток, мн. вирусов; участвуют в реализации генетич. информации. Пространственная структура РНК представлена в осн. однонитчатой полинуклеотидной цепью (содержит от 75 до 10 000 нуклеотидов), образующей в отд. местах двуспиральные участки по принципу комплементарности оснований. В соответствии с функцией и структурными особенностями различают неск. классов клеточных РНК: рибосомальные (рРНК), транспортные (тРНК), информационные, или матричные (иРНК, или мРНК), и низкомолекулярные РНК (нмРНК). В живой клетке синтез РНК на матрице ДНК (см. ТРАНСКРИПЦИЯ) осуществляется с помощью фермента РНК-полимеразы. В клетках эукариот обнаружены 3 разные РНК-полимеразы, синтезирующие разные классы РНК. Синтезированная РНК комплементарна матрице ДНК, поскольку порядок включения нуклеотидов в цепь РНК определяется последовательностью нуклеотидов в матрице ДНК, по принципу специфического спаривания оснований. В пределах определ. гена только одна из 2 комплементарных цепей ДНК служит матрицей для синтеза РНК. Молекулы РНК синтезируются обычно в виде предшественников, имеющих большую мол. м., чем функционально активные молекулы. 1Рибосомальные РНК высокомолекулярны и составляют ок. 80% всех клеточных РНК. В клетках эукариот синтез рРНК локализован в ядрышке и осуществляется РНК-полимеразой I; геном содержит от 50 до 1000 идентичных копий генов, кодирующих рРНК. Рибосомальные гены расположены в виде протяжённых тандемов и локализованы в одной или неск. хромосомах. В результате взаимодействия этих участков со специфич. белками образуются ядрышки. Связываясь с определ. белками, рРНК организуют важнейший аппарат клетки — рибосомы, обеспечивающие синтез всех клеточных белков.
На рРНК приходится ок. 60% массы рибосомы. Транспортные РНК низкомолекулярны (мол. м. ок. 25 000), их структура наиб, изучена по сравнению с др. классами РНК; синтезируются при помощи РНК-полимеразы III в виде предшественников. Структура молекул тРНК отличается эволюц. консервативностью, что, по-видимому, связано с высокой степенью их функц. специализации. На основании данных О первичной структуре неск. тРНК показано, что существует один способ двумерной укладки цепей тРНК, дающий макс, кол-во спаренных участков: все известные тРНК образуют вторичные структуры, напоминающие по форме клеверный лист. Третичная структура, образуемая при участии дополнит, водородных связей, напоминает по форме латинскую букву L. Осн. функция тРНК — связывание соотв. аминокислоты (происходит за счёт образования ковалентной связи между карбоксильной группой аминокислоты и остатком концевой рибозы тРНК) и перенос её на рибосому с помощью фермента аминоацил-синтетазы, способной специфически «узнавать» как аминокислоту, так и соответствующую ей тРНК. Для каждой аминокислоты существует специфич. аминоацилсинтетаза и тРНК. В ряде случаев для одной и той лее аминокислоты имеется две или более тРНК, т. к. одна аминокислота может кодироваться неск. разными кодонами (вырожденность кода). Информационные, или матричные, РНК наиб, разнообразны по мол. м. (от 0,05 X 106 до 4 X 10s). Они составляют ок. 2% от общего кол-ва РНК в клетке, служат матрицами для синтеза клеточных белков. В клетках эукариот синтез мРНК осуществляется в ядре, откуда в составе специфич. рибонуклеопротеидных частиц (информосом) мРНК транспортируется в цитоплазму. Синтез длинных предшественников мРНК (про-мРНК), содержащих некодирующие участки, и их дальнейшие значит, превращения — характерная особенность эукариот. Некодирующие участки (нитроны) распределены по всей длине молекулы про-мРНК. Процесс выщепления интронов и дальнейшая компоновка кодирующих участков(сплайсинг)направляется спец. клеточными механизмами (см. ПРОЦЕССИНГ). Зрелая мРНК содержит 5′-и З’-концевые нетранслируемые последовательности, длина к-рых варьирует у разных мРНК. В 5′-концевой последовательности имеется участок, необходимый для связывания мРНК с рибосомой. Роль этих нетранслируемых последовательностей неизвестна. На 5′-конце мРНК эукариот обычно имеется метилированный по 7′-положению гуанозин («кэп»-структура), связанный 5′-5′ пирофосфатной связью с последующим основанием. В большинстве случаев 3′-конец мРНК завершается протяжённой (до 250 оснований) гомополимерной последовательностью (полиаденилатом), к-рая добавляется к мРНК после завершения её транскрипции. У прокариот синтезированная мРНК не претерпевает существ, изменений. Низкомолекулярные РНК (нмРНК) разнообразны по функции, структуре и размерам (от 70 до 300 оснований). Рибосомальные нмРНК— 5S рРНК и 5,8S рРНК входят в состав 60 S субчастиц рибосом, нмРНК др. типа обнаружены в ядре и цитоплазме эукариот в составе рибонуклеопротеидных частиц (РНП-частиц). Предполагается, что РНП-частицы выполняют важную роль в механизме сплайсинга про-мРНК, в синтезе белков, секретируемых клеткой. Нек-рые ферменты (напр., изомераза амилаза, панкреатическая рибонуклеаза) содержат нмРНК в качестве необходимого структурного элемента. Функция большинства нмРНК не ясна. У РНК-содёржащих вирусов геномы представлены двуспиральной или односпиральной РНК. Структурная организация геномных РНК нек-рых вирусов сходна с мРНК эукариот и подобно последней может непосредственно транслироваться. У др. вирусов транслируется только РНК, комплементарная геномной цепи. Перечисленные выше _классы РНК далеко не исчерпывают всё многообразие РНК, встречающихся в живой природе.
.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)рибонуклеи́новые кисло́ты
(РНК), тип нуклеиновых кислот; содержатся во всех живых клетках и участвуют в двух этапах реализации генетической информации: транскрипции (синтезе РНК на ДНК) и трансляции (синтезе белков на рибосомах). Молекулы РНК, как правило, представляют собой одноцепочечные незамкнутые полинуклеотиды, построенные из мономеров – нуклеотидов (в данном случае – рибонуклеотидов). В отдельных местах цепи нуклеотиды спариваются по принципу комплементарности и образуются участки двойной спирали. Число рибонуклеотидов в молекуле может быть от нескольких десятков до десяти тысяч. В отличие от дезоксирибонуклеотидов ДНК, содержащих углевод дезоксирибозу, рибонуклеотиды содержат углевод рибозу, а вместо азотистого основания тимина – урацил. Остальные азотистые основания (аденин, гуанин и цитозин) те же, что в ДНК. Различные классы РНК выполняют в клетках разные функции, но все они синтезируются на матрице ДНК.
Рибосомальные РНК (р-РНК), составляющие основную массу всех клеточных РНК (80—90%), соединяясь с белками, формируют рибосомы, органоиды, осуществляющие синтез белков. В клетках эукариот р-РНК синтезируются в ядрышках.
Транспортные РНК (т-РНК) с помощью специального фермента связываются с аминокислотами и доставляют их на рибосомы. При этом определённые аминокислоты, как правило, переносятся определёнными («своими») т-РНК. Однако в ряде случаев одну аминокислоту могут кодировать несколько разных кодонов (вырожденность генетического кода). Соответственно, каждую из таких аминокислот могут переносить две или более т-РНК.
Информационные, или матричные, РНК (и-РНК, м-РНК) составляют в клетке ок. 2% от общего количества РНК. В клетках эукариот и-РНК синтезируются в ядрах на матрицах ДНК, затем переходят в цитоплазму и связываются с рибосомами. Здесь они, в свою очередь, служат матрицами для синтеза белка на рибосомах: к и-РНК присоединяются т-РНК, несущие аминокислоты. Таким образом, и-РНК преобразуют информацию, заключённую в последовательности нуклеотидов ДНК, в последовательность аминокислот синтезируемого белка, т.е. генетическая информация реализуется в уникальной структуре белка, которая определяет его специфичность и функции. У некоторых вирусов РНК (одноцепочечная или двухцепочечная) выполняет роль хромосомы. Такие вирусы называются РНК-содержащими.
Некоторые РНК, подобно ферментам, обладают каталитической активностью. В последние годы был открыт новый класс РНК – т.н. малые РНК. Эти РНК, по-видимому, выполняют в клетках роль универсальных регуляторов, включая и выключая гены при эмбриональном развитии и контролируя внутриклеточные процессы. Полагают, что в процессе биохимической (добиологической) эволюции на Земле первоначально появились молекулы РНК, возможно даже их способные к самовоспроизведению комплексы, и лишь потом возникли более стабильные молекулы ДНК.
(РНК), тип нуклеиновых кислот; содержатся во всех живых клетках и участвуют в двух этапах реализации генетической информации: транскрипции (синтезе РНК на ДНК) и трансляции (синтезе белков на рибосомах). Молекулы РНК, как правило, представляют собой одноцепочечные незамкнутые полинуклеотиды, построенные из мономеров – нуклеотидов (в данном случае – рибонуклеотидов). В отдельных местах цепи нуклеотиды спариваются по принципу комплементарности и образуются участки двойной спирали. Число рибонуклеотидов в молекуле может быть от нескольких десятков до десяти тысяч. В отличие от дезоксирибонуклеотидов ДНК, содержащих углевод дезоксирибозу, рибонуклеотиды содержат углевод рибозу, а вместо азотистого основания тимина – урацил. Остальные азотистые основания (аденин, гуанин и цитозин) те же, что в ДНК. Различные классы РНК выполняют в клетках разные функции, но все они синтезируются на матрице ДНК.
Рибосомальные РНК (р-РНК), составляющие основную массу всех клеточных РНК (80—90%), соединяясь с белками, формируют рибосомы, органоиды, осуществляющие синтез белков. В клетках эукариот р-РНК синтезируются в ядрышках.
Транспортные РНК (т-РНК) с помощью специального фермента связываются с аминокислотами и доставляют их на рибосомы. При этом определённые аминокислоты, как правило, переносятся определёнными («своими») т-РНК. Однако в ряде случаев одну аминокислоту могут кодировать несколько разных кодонов (вырожденность генетического кода). Соответственно, каждую из таких аминокислот могут переносить две или более т-РНК.
Информационные, или матричные, РНК (и-РНК, м-РНК) составляют в клетке ок. 2% от общего количества РНК. В клетках эукариот и-РНК синтезируются в ядрах на матрицах ДНК, затем переходят в цитоплазму и связываются с рибосомами. Здесь они, в свою очередь, служат матрицами для синтеза белка на рибосомах: к и-РНК присоединяются т-РНК, несущие аминокислоты. Таким образом, и-РНК преобразуют информацию, заключённую в последовательности нуклеотидов ДНК, в последовательность аминокислот синтезируемого белка, т.е. генетическая информация реализуется в уникальной структуре белка, которая определяет его специфичность и функции. У некоторых вирусов РНК (одноцепочечная или двухцепочечная) выполняет роль хромосомы. Такие вирусы называются РНК-содержащими.
Некоторые РНК, подобно ферментам, обладают каталитической активностью. В последние годы был открыт новый класс РНК – т.н. малые РНК. Эти РНК, по-видимому, выполняют в клетках роль универсальных регуляторов, включая и выключая гены при эмбриональном развитии и контролируя внутриклеточные процессы. Полагают, что в процессе биохимической (добиологической) эволюции на Земле первоначально появились молекулы РНК, возможно даже их способные к самовоспроизведению комплексы, и лишь потом возникли более стабильные молекулы ДНК.
.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)