Квантовая физикаФизикаЭнергетика

Самый сильный в мире магнит приближает к достижению термоядерного синтеза

Разработкой нового магнита руководили исследователи Массачусетского технологического института, работавшие над экспериментальной конструкцией термоядерного реактора, впервые представленной еще в 2015 году

В области ядерного синтеза физики делают большие успехи в погоне за чистой, неисчерпаемой энергией, например, те, кто создает ИТЭР, крупнейший в мире реактор-токамак. Другие, тем временем, работают над более компактными и доступными по цене конструкциями, пытаясь продвинуть технологию вперед. Новый прорыв ученых из Массачусетского технологического института демонстрирует, как некоторые из самых больших достижений могут быть достигнуты благодаря проектам меньшего размера — ученые создали рекордный сверхпроводящий магнит, самый мощный в своем роде в мире.

Разработкой нового магнита руководили исследователи Массачусетского технологического института, работавшие над экспериментальной конструкцией термоядерного реактора, впервые представленной еще в 2015 году. Реактор, получивший название ARC (доступный, надежный, компактный), представляет собой токамак, который, как и ИТЭР, стремится воссоздать условия внутри Солнца, при которых атомы водорода сливаются вместе под воздействием экстремальной температуры и давления, чтобы высвободить огромное количество чистой энергии. Однако реактор ARC будет примерно вдвое меньше ИТЭР с радиусом 3,3 метра.

Будь то ИТЭР, дуговые реакторы или термоядерные реакторы, как стелларатор Wendelstein 7-X в Германии, физика и общая цель во многом одинаковы. Изотопы водорода, дейтерий и тритий, вводятся в камеру и перегреваются, образуя закрученную плазму, которую затем необходимо удержать и предотвратить ее попадание на стены реактора. И для этого магниты являются ключевым моментом.

Будь то смещенные магнитные катушки, работающие в Wendelstein 7-X, или аккуратная повторяющаяся последовательность магнитных катушек, наблюдаемая в обычных токамаках, все они предназначены для генерации магнитных полей настолько сильных, что они могут удерживать плазму на месте достаточно долго для того, чтобы могли произойти реакции слияния. Но ученые, работающие над ARC, занимаются магнитной технологией с одним ключевым отличием.

ИТЭР полагается на сверхпроводящие магниты для управления плазмой — это низкотемпературные магниты, которые становятся сверхпроводящими при охлаждении примерно до -269 ° C. Вместо этого ученые ARC стремятся использовать так называемые высокотемпературные сверхпроводники, которые позволяют создавать гораздо более сильное магнитное поле в меньшем пространстве. Команда работала с имеющейся в продаже лентой, которая поставляется в катушках и разворачивается в плоскую ленту, которая становится сверхпроводящей при более высоких температурах и создает более сильное магнитное поле. Поскольку она теоретически лучше удерживает плазму, реактор может быть меньше и дешевле в строительстве.

Используя эту ленту в качестве отправной точки, ученые Массачусетского технологического института вместе со стартапом Commonwealth Fusion Systems (CFS) потратили последние три года, пытаясь превратить ее в мощный магнит для использования в демонстрационном устройстве под названием SPARC, испытательном стенде для ARC, которое будет примерно вдвое меньше. Конечный продукт ученых — магнит, который использует 267 км сверхпроводящей ленты для формирования 16 пластин, которые сложены вместе внутри D-образного корпуса. Этот магнит охлаждается примерно до -253,15 ° C, после чего он становится сверхпроводящим и создает мощное магнитное поле.

«Мы создали первый в своем роде сверхпроводящий магнит, — говорит Джой Данн, руководитель производственного отдела CFS. — Потребовалось много работы для создания уникальных производственных процессов и оборудования. В результате мы теперь хорошо подготовлены к наращиванию производства SPARC. Мы начали с физической модели, а затем проработали множество разработок и прототипов, чтобы превратить бумажный проект в настоящий физический магнит».

В ходе испытаний ученые постепенно наращивали силу сверхпроводящего магнита, пока он не создал рекордное магнитное поле силой 20 тесла, что сделало его самым мощным магнитным полем, когда-либо созданным для термоядерного реактора.

Уже опубликовав ряд статей по физике, демонстрирующих осуществимость SPARC, команда считает новый магнит недостающей частью головоломки, заявляя, что магнит позволяет создать магнитное поле, равное полю, наблюдаемому в реакторе в 40 раз больше его размера.

Ученые построили и испытали самый мощный магнит в мире. © Gretchen Ertl, CFS/MIT-PSFC, 2021

«Ниша, которую мы заполняли, заключалась в том, чтобы использовать обычную физику плазмы, традиционные конструкции и технологии токамаков, но привнести в нее эту новую магнитную технологию, — говорит Мартин Гринвальд из Массачусетского технологического института. Мы просто вводили новшества с помощью магнита, а затем применяли базу знаний из того, что было изучено за последние десятилетия».

В настоящее время ни один термоядерный реактор не продемонстрировал способности генерировать больше энергии, чем им необходимо для его работы, и достижение точки «безубыточности» было бы поистине историческим моментом. Ученые считают, что с новым мощным магнитом они сделали значительный шаг к этой цели.

«Теперь я искренне оптимистичен в отношении того, что SPARC может достичь чистой положительной энергии, основываясь на продемонстрированных характеристиках магнитов, — говорит Мария Зубер, вице-президент Массачусетского технологического института по исследованиям. — Следующим шагом будет масштабирование, чтобы построить настоящую электростанцию. Впереди еще много проблем, не последней из которых является разработка конструкции, обеспечивающей надежную и стабильную работу. И, понимая, что цель здесь — коммерциализация, еще одна серьезная проблема будет экономической. Как вы спроектируете эти электростанции, чтобы их строительство и развертывание было рентабельным?»

Завершение создания реактора SPARC намечено на 2025 год.

Поделиться в соцсетях
Показать больше
Подписаться
Уведомление о
guest
0 Комментарий
Встроенные отзывы
Посмотреть все комментарии
Back to top button